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Patterns are being generated in nature through biological and chemical processes.
In this paper we are proposing artificial pattern generation technique using curve
evolution model. Given a closed curve in 2D space the curve is deformed under a
set of constraints derived from biological and physical pattern generation models.
In the proposed approach the reaction-diffusion and shape optimization models
are used to derive the constraints for curve evolution. The evolution of curve is
implemented in level set framework as the level set based curve evolution supports
change in topology of the closed contour. The proposed model is used to gener-
ate number of patterns and also successfully tested for reconstructing partially
occluded patterns.

1.1. Introduction

Patterns generated in nature often enchant us. However reproduction of such pat-
terns for realistic rendering of a physical object or for animation is a major research
challenge in image processing and computer graphics. Natural patterns are so di-
verse that it is impossible to describe and generate them in a single mathematical
framework. This motivates researchers to propose different pattern generation mod-
els. There are many pattern generation models in literature.4,7,11 In this work we
utilize reaction-diffusion model of Turing11 and shape optimization model typically
used for analyzing strength of materials.3

The reaction-diffusion model, proposed by Turing11 and which is based on reac-
tion and diffusion of chemicals, can be used to explain biological patterns, for exam-
ple the spots of Cheetah or Leopard, patterns on the skin of Giraffe etc. Meinherdt4

has extended Turing’s reaction-diffusion model to generate patterns like stripes of
Zebra. Recently, Murray has used netlike structure generation model,7 which can as
well be used for pattern generation. In a related context reaction-diffusion model is
also extended for fingerprint and natural texture generation and for solving pattern
disocclusion (when part of the pattern is missing) problem.1

The motivation behind our work is to design an alternative model of pattern
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generation using level set framework.8 Level set based curve evolution is a well-
researched topic and has wide application ranging from image restoration to im-
age segmentation, tracking etc.2,5,8 Since a topology adaptive closed curve can be
evolved in the level set paradigm, and can be converged to a desired shape depending
on the constraint to the curve evolution, level set based curve evolution is adapted
in this paper as the framework for pattern generation. In this approach we have
used constraints from reaction-diffusion model to evolve the level set function for
curve evolution. Similar to reaction-diffusion model, shape optimization technique
can also be used to drive the evolving curve or level set function for pattern genera-
tion. Optimization of shape (that is the distribution of the material density within
the shape) under different physical conditions, for example, a rectangular piece of
material subjected to a pre-designed stress, also generates patterns.3 The bound-
ary of the shape expressed in level set function is deformed to generate a particular
pattern. The contribution of this paper is in demonstrating the use of level set
paradigm in generating patterns utilizing both these biological (reaction-diffusion)
and physical (shape optimization) models.

In Section 1.2, we briefly review the level set model of curve evolution followed
by the description of reaction-diffusion and shape optimization models that even-
tually drives the curve for pattern generation. The proposed level set based curve
evolution scheme for pattern generation is described in Section 1.3. The results and
applications related to pattern disocclusion are presented in Section 1.4 followed
by conclusions.

1.2. Background

The understanding of level set based curve evolution is the prerequisite for under-
standing our proposed pattern generation model. Level set based curve evolution
is briefly introduced in the next section. As explained in the last section the con-
straints for curve evolution come from the traditional model of biological pattern
generation using reaction-diffusion and shape optimization schemes. These topics
are introduced in Sections 1.2.2 and 1.2.3 respectively.

1.2.1. Level set model of curve evolution

A closed curve c(s) embedded in a 2D image matrix I ⊂ Z2, can be evolved with
respect to time t along any direction vector decomposed into normal and tangential
components. However, since curve evolution along tangential component is essen-
tially a re-parameterization of the curve8 and since we are interested only in the
deformation of curve shape and not in parameterization of the curve, the equation
of curve evolution (with respect to time t) can be expressed as,

.
∂~c(s)
∂t

≈ β ~N(t), (1.1)
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where β is the speed of deformation of ~c(s) along ~N(t), the normal to the curve ~c(s).
The problem of generating a pattern can be posed as detecting the position of ~c(s)
at specific time steps when ~c(s) is continuously being deformed along ~N(t). In the
proposed approach, reaction-diffusion and shape optimization based models supply
the requisite constraint to monitor β. The initial curve is specified by ~c(s) at t = 0
and the iterative evolution of the curve terminates when ~c(s) evolves into a desired
pattern. We now define the curve evolution in level set domain.

It is a common practice to define the level set function ϕ as the signed distance
function8,9 such that ϕ (x, y) > 0 if (x, y) is outside c(s), ϕ (x, y) < 0 if (x, y) is
inside c(s) and ϕ (x, y) = 0 if (x, y) is on c(s). The element of the image matrix I
having m and n numbers of rows and columns respectively, is (x, y), 0 ≤ x < m,
0 ≤ y < n. Therefore, by definition c(s) is embedded in the zero level set of ϕ at
any time instant t ;

.ϕ (c (s) , t) = 0. (1.2)

The zero level set is the intersection of the level set function (assuming the signed
distance values of ϕ are plotted along z-axis) and the plane at z = 0. Differentiating
1.2 with respect to t and using 1.1, the evolution of signed distance function ϕ is
given by8,9:

.
∂ϕ

∂t
= −β ~N∇φ = −β ‖∇φ‖ . (1.3)

The equivalent numerical approximation is given by ϕn+1
ij = ϕn

ij −∆tβ
∣∣∇ϕn

ij

∣∣ = 0
where ϕn

ij and ϕn+1
ij are level set functions at (i, j) location at iteration n and (n+1)

respectively and ∆t is the time step. Since, β is the speed of deformation of c(s)
along ~N(t) and c(s) is embedded in ϕ, we design β to deform ϕ and the modified
shape of c(s) is obtained from the zero level set of the deformed ϕ. In context of
pattern generation, β controls the deformation of ϕ such that after certain time c(s)
takes the shape of a desired pattern. So the art of pattern generation using level
set method is the art of constructing suitable velocity field, which evolves the level
set function to give a particular pattern. Throughout this paper our objective is
to design β based on the reaction-diffusion and shape optimization based pattern
generating process. In the next section we introduce reaction-diffusion model.

1.2.2. Reaction-diffusion model

Observing patterns generated through biological process, for example, patterns of
Zebra, Jaguar, Leopards etc, Alan Turing is the first to articulate an explanation
of how these patterns are generated in nature.11 Turing observed that patterns
could arise as a result of instabilities in the diffusion of morphogenetic chemicals
in the animals’ skins during the embryonic stage of development. The basic form
of a simple reaction-diffusion system is to have two chemicals (call them a and b)



November 20, 2007 16:41 World Scientific Review Volume - 9.75in x 6.5in WScientificBC

4 Amit Chattopadhyay and Dipti Prasad Mukherjee

that diffuse through the embryo at different rates and then react with each other to
either build up or break down the chemicals a and b. Following are the equations
showing the general form of a two chemical reaction-diffusion system in 1D.11

.
∂a

∂t
= F (a, b) + Da∇2a, and (1.4)

.
∂b

∂t
= G (a, b) + Db∇2b. (1.5)

The equation 1.4 conveys that the change of concentration of a at a given time
depends on the sum of the local concentrations of a and b, F (a, b) and the diffusion
of a from places nearby. The constant Da defines how fast a is diffusing, and the
Laplacian∇2a is a measure of how high the concentration of a is at one location with
respect to the concentration of a nearby in a local spatial neighbourhood. If nearby
places have a higher concentration of a, then ∇2a is positive and a diffuses towards
the center position of the local region. If nearby places have lower concentrations,
then ∇2a is negative and a diffuses away from the center of the local region. The
same analogy holds for the chemical b as given in 1.5.

The key to pattern formation based on reaction-diffusion is that an initial small
amount of variation in the concentrations of chemicals can cause the system to be
unstable initially and then to be driven to a stable state in which the concentrations
of a and b vary across a boundary. A typical numerical implementation of ??due
to12 is given as:

.∆ai = s(16− aibi) + Da(ai+1 + ai−1 − 2ai), and (1.6)

.∆bi = s(aibi − bi − ξi) + Db(bi+1 + bi−1 − 2bi). (1.7)

In an array of cells the concentration of chemical a (b) in i, (i+1) and (i -1)
locations are given by ai (bi), ai+1 (bi+1) and ai−1 (bi−1) respectively. The value
of ξi is the source of slight irregularities in chemical concentrations at ith location.
Fig. 1.1 illustrates the progress of concentration of chemical b across an array of 60
cells as its concentration varies over time. Initially the values of ai and bi are set
to 4 for all the cells in the array. The value of ξi is perturbed around 12±0.05. The
diffusion constants are set to Da = 0.25 and Db = 0.0625, which means a diffuses
more rapidly than b and we take reaction constant s as 0.03125.

The numerical scheme of 1.6 and 1.7 can easily be extended for 2D grid where
a matrix of cells are defined in terms of 4 or 8 neighbourhood connectivity. The
two-chemical model of Turing is extended to five chemical systems by Meinherdt4

for periodic stripe generation.
As discussed in the introduction, attractive pattern can also be generated

through shape optimization when the shape is subjected to certain physical con-
straints. We present this concept in the next section.
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(a) (b) (c) (d)

Fig. 1.1. 1D example of reaction-diffusion. (a): Initial concentration of chemical b. (b) – (d):
Concentrations of b after every 4000 iterations.

1.2.3. Shape optimization

The problem of shape optimization is often referred as structural shape optimiza-
tion where an optimized structure is obtained as the original shape is subjected
to certain pre-defined load. Through shape optimization process, the mass of the
shape is redistributed within the shape boundary (also referred as design domain)
optimally to counter the effect of load and support to the shape. This optimal mass
distribution is what we perceive as a pattern. In one sense it is a user defined pat-
tern as the extent and position of load and support to the shape or structure is user
selectable. Consider a design domain or a shape as shown in Fig. 1.2. Under a given
load and support, the mass of the shape is redistributed as shown in Fig. 1.3. The
optimized shape boundary is always constrained within the initial design domain.
The pattern generated in Fig. 1.3 is what interests us and we show in subsequent
section that it is possible to pose this problem as curve evolution problem.

It is a standard practice to assume that the shape under consideration is a col-
lection of finite elements to find stresses and displacements of individual elements
and consequently the entire shape.13 Utilizing the displacement information of in-
dividual element, the method of moving asymptotes (MMA) finds the optimal mass
distribution within the design domain.

Fig. 1.2. Design domain with support and load.

Considering the top left corner of the design domain as origin and the displace-
ments of ith element ui due to load Fi at the ith element of the design domain, the
work done or compliance C is expressed as force times displacement C = FT U after
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Fig. 1.3. Optimized shape as the desired pattern.

arranging displacement and forces of all elements in vectors U and F respectively.
Given K as the global stiffness matrix of the discretized design domain F = KU ,
compliance can be written as, C = FT U = UT KU.

Considering that the design domain consists of N number of unit elements each
having material densities x, the mass m of the shape is given by,

.m = x1v1 + x2v2 + . . . + xNvN , (1.8)

where v is the element volume. The distribution of this material density x due to
different load and support arrangements to the design domain is what we perceive
as desired pattern. Therefore, the objective of this derivation is to find the solution
of x under different load and support conditions.

The total stiffness of the shape using finite element method is given by,

.K = x1k0 + x2k0 + . . . + xNk0, (1.9)

where k0 is the stiffness of individual element. The above model suggests that the
stiffness of each element is proportional to the density of the material the element
contains. The effect of material density on the stiffness value can be penalized by
introducing penalization power p as:

.K = xp
1k0 + xp

2k0 + . . . + xp
Nk0. (1.10)

The objective of the topology optimization problem is to minimize the compliance
min

x
: C(x) = UT KU =

∑N
i=1(xi)puT

i k0ui subject to constraints (V (x)/V0) = f ,
F = KU , 0 < xmin ≤ x ≤ 1. The index i stands for the ith element and xmin is
a vector of minimum material densities (non-zero to avoid singularity). The pre-
defined volume fraction f is defined as the ratio of volume V (x) at a given instant
(that is, V (x) is the volume at a particular material density x which is changing
with time) and the initial volume V0. This optimization problem can be solved
using different approaches such as optimality criteria (OC) method or using the
Method of Moving Asymptotes (MMA).3 Following3 the heuristic updating scheme
for the design variable can be formulated as

.xnew
i =





max(xmin, xi − θ) if xiB
η
i ≤ max(xmin, xi − θ)

xiB
η
i if max(xmin, xi − θ) < xiB

η
i < min(1, xi + θ)

min(1, xi + θ) if min(1, xi + θ) ≤ xiB
η
i

(1.11)

where xnew
i is the updated design vector, θ is a positive constant which is the

limit of change of the design vector. The parameter η is a numerical damping coeffi-
cient and Bi is found from the optimality condition Bi = (− (∂C/∂ xi) /λ (∂V /∂ xi))
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where λ is a Lagrangian multiplier evaluated from well-known bi-sectioning algo-
rithm. The element sensitivity (i.e. the change in compliance with respect to
the change in design variable) of the objective function is found as (∂C/∂xi) =
−p (xi)

p−1 uT
i k0 ui. In order to ensure existence of solutions to the topology opti-

mization problem some restrictions on the resulting design are usually introduced.10

For Fig. 1.2, the design space is discretized into 32x20 elements whose left side
is fixed (as support) and unit force is applied at the position (30,20). The initial
volume fraction and penalization power are taken as 0.5 and 3 respectively. The
optimized shape following 1.11 is shown in Fig. 1.3.

From the pattern generation point of view we investigate how patterns as in
Fig. 1.3 can be generated using level set curve evolution method. As discussed ear-
lier, the reaction diffusion based approach or optimized shape boundary technique
should be implemented to guide the evolution of level set function. This is explained
next.

1.3. Proposed Methodology

So far we have investigated reaction-diffusion and shape optimization based pattern
generation. The point is whether these techniques can be unified in the level set
framework. Alternately, the challenge is to develop β of 1.3 which is to be motivated
from either reaction-diffusion approach or shape optimization approach. This is
taken up next.

1.3.1. Reaction-diffusion influenced curve evolution

In reaction-diffusion system, two unstable chemicals have different levels of density
distribution. A stable pattern is formed when two chemicals and the interface
between them describe stable configurations. For implementation using level set
function, the interface between the chemicals at stable state should be given by
the zero level set. The proposed model should evolve the level set function with
a velocity such that the chemicals or the resulting interface between the chemicals
goes to a stable state. One of the preconditions to generate stable state is that
the energy corresponding to the system should be minimum. The energy term
corresponding to a reaction-diffusion system of two chemicals with densities a and
b can be expressed as,7

.E(t) =
1
2

∫

Π

‖∇w‖2 dx, (1.12)

where the norm ‖∇w‖2 = |∇a|2 + |∇b|2 and Π is the domain of reference. The
variable w can be visualized as the surface of average concentrations of the chem-
icals a and b put together. The domain of reference represents the surface plane
of chemicals at z = 0 where the chemical concentrations are being varied as the
deformation of zero level set.
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The initial boundary condition is given as (n.∇)w = 0 on ∂Π. The normal unit
vector n is defined on the boundary ∂Π of reference domain Π. The initial boundary
condition (n.∇)w = 0 implies that the rate of variation of concentration w along
the normal to the boundary ∂Π of reference domain is zero. The initial condition
w(x, 0) = w0(x) on Π gives the concentration of the chemical w in Π at time t=0.
To find the gradient descent direction so that energy defined in 1.12 is minimized,
we get

.
∂E

∂t
=

1
2

∂

∂t

∫

Π

(|∇a|2 + |∇b|2)dx. (1.13)

From the derivation in Appendix I and applying the boundary conditions, (11) can
be simplified as

.
∂E

∂t
=

∫

Π

〈−div(∇a), at〉 dx +
∫

Π

〈−div(∇b), bt〉 dx. (1.14)

Using Cauchy-Schwartz inequality the field for which E (t) decreases most
rapidly is given by,

.
∂a

∂t
= div(∇a), (1.15)

.
∂b

∂t
= div(∇b). (1.16)

We can take either of the above fields along normal to the boundary of con-
centration as our required velocity field of level set evolution. So we write the
curve evolution based pattern generation algorithm using reaction-diffusion model
as follows:

Algorithm 1
Step 1: Initialize the embedding level set function ϕ(x, y, 0) at t = 0 by the

distance function of any closed curve in the domain Π. So ϕ(x, y, 0) = 0 on ∂Π,
ϕ(x, y, 0) > 0 inside ∂Π and ϕ(x, y, 0) < 0 outside ∂Π.

Step 2: Initiate minor (random) perturbation of a or b in the desired locations
of Π.

Step 3: Calculate the speed function β = div(∇b) following 1.16. This defines
the speed of propagation of level set function ϕ(x, y, t). Similarly, speed for chemical
a can also be evaluated.

Step 4: Update the level set function ϕ(x, y, t) following 1.3. Stop update
ϕ(x, y, t) when we get a stable pattern or there are insignificant changes in pattern
in two consecutive iterations.

Next we show how shape optimization can be expressed as level set based curve
evolution technique.
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1.3.2. Shape optimization based curve evolution

In this case the challenge is to express the compliance minimization problem of
Section 1.2.3 as curve boundary evolution problem. The velocity field for curve
evolution is derived utilizing shape derivative technique.6

In linear elasticity setting (i.e. stress strain relation of the material is linear), let
Ω ⊂ R2 be a bounded open set occupied by a linear isotropic elastic material (i.e.
elastic properties are independent of the orientation of the axes of coordinates) with
elasticity coefficient A. For simplicity we assume that there is no volume force but
only surface loadings g. The boundary of Ω is made of three disjoint parts ∂Ω ≡
Γ

⋃
ΓN

⋃
ΓD with Dirichlet boundary conditions on ΓD and Neumann boundary

conditions on Γ
⋃

ΓN as shown in Fig. 1.4. The portion of the boundary where
load is being applied is ΓN whereas the portion of the boundary that is fixed is ΓD.
Remaining part of the boundary is Γ, which is allowed to vary in the optimization
process.

Fig. 1.4. Boundary defined on design domain for shape optimization.

The displacement field u of Ω is the unique solution of the linearized elastic-
ity system −div (Ae (u)) = 0 in Ω with boundary conditions u = u0 on ΓD and
(Ae(u)) n = g on Γ

⋃
ΓN .6 The solution involving displacement field u interprets

that the variation in stress tensor is zero once the solution is reached. The solution
of displacement field u is the desired pattern.

The strain tensor e(u) is given as, e(u) = 0.5(∇u + ∇tu) with t denotes the
transpose operator. A e(u) is the stress tensor. The prescribed initial value of u on
ΓD is u0. The unit normal direction to boundary ∂Ω is n. The objective function
for minimization is denoted by,

.J(Ω) =
∫

Γ
⋃

ΓN

gu ds =
∫

Ω

A e(u) e(u) dx. (1.17)

To take into account the weight of the structure, we rewrite 1.17 as minimization
of inf

Ω
J(Ω) + l

∫
Ω

dx where l is the positive Lagrange multiplier l. In general this

minimization is well posed only if some geometrical and topological restrictions
on the shape are enforced.2 Using shape derivative method6 and following the
derivation in Appendix II, we find a gradient descent field, which minimizes the
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objective function, as

.θ = −v0n, (1.18)

where v0 = 2[∂(gu)
∂n + H (gu)] − Ae(u)e(u) and n is the normal to Ω. Assuming

a displacement from reference domain Ω0 to Ω = (Id + θ) Ω0, θ is the displacement
field of Ω0 and Id is the identity mapping in W 1,∞ (

R2, R2
)
. To implement numer-

ically, the design domain Ωt is updated at every iteration with time step ∆t > 0
as,

.Ωt = (Id + ∆tθ)Ωt−1. (1.19)

From 1.18, we observe that the gradient descent field acts in the normal direc-
tion of the boundary as stipulated in level set based curve evolution. Controlling the
boundary conditions, for example, nature and location of surface loading and sup-
port (g, e), various patterns are generated. The corresponding pattern generation
algorithm is given as follows:

Algorithm 2
Step 1: Initialize the level set function similar to step 1 of Algorithm 1. Specify

loading and support conditions for the shape.
Step 2: The boundary conditions are solved to find the displacement u.
Step 3: Calculate the speed function v0 of 1.18 that defines the speed of prop-

agation of ϕ (x, y, t) and then update the level set function following 1.3.
Step 4: Stop update of ϕ (x, y, t) when a stable pattern is obtained. The stability

condition is also achieved when there are marginal changes in volume fraction of
the shape (that is insignificant change of u) in two consecutive iterations.

In the next section, we show how these methods can be used to generate fasci-
nating patterns.

1.4. Results

We first present the results obtained using Algorithm 1. The spot and stripes
patterns after 8000 and 1000 iterations are shown in Figs. 1.5 respectively. For spot
pattern, perturbation to the tune of 12±0.5 is given in every alternate coordinate of
80x80 matrix. For the stripe pattern, the same perturbation is given at the centre
of the 80x80 matrix.

The application of Algorithm 2 is shown in Fig. 1.6 Several patterns are shown
and in each case the input is a rectangular design domain from which the patterns
are carved out. The size of the rectangular design domain, the load applied to the
shape including its coordinate and the support to the design domain are given in
the Table 1.
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a b

Fig. 1.5. (a)Spot pattern (8000 iterations). (b) Stripe pattern (1000 iterations)

(a) (b) (c)

(d) (e)

(f) (g)

(h)
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(i) (j) (k)

(l) (m) (n)

(o) (p) (q)

Fig. 1.6. Patterns generated using shape optimization technique (Algorithm 2). The original
shape dimension, load distribution on the shape and fixed supports for the shape for these patterns
are given in Table 1.1.

An important use of pattern generation scheme is to regenerate a part of the
missing pattern or reconstruct a noise-corrupted pattern given the database of model
parameters for pattern generation. This problem is often referred as pattern disoc-
clusion problem as discussed next.

1.4.1. Pattern disocclusion

The problem of pattern disocclusion is addressed using a pattern database, which
contains different pattern generation models, and the range of parameters required
for the respective model (for example, perturbation amount and location, load and
support for the models discussed in this paper). Note that there is no need of ex-
plicitly storing the patterns in the pattern database. Given a partially occluded
pattern where part of the pattern is missing as shown in Fig. 1.7(a), patterns cre-
ated from the pattern database are point-wise matched to the pattern of Fig. 1.7(a)
to calculate the mean square error (MSE). MSE is calculated using point-wise mul-
tiplication of occluded pattern and the reconstructed pattern matrices followed by
summation of non-zero elements of the product matrix. For the model and model
parameters for which the generated pattern gives minimum MSE with respect to
the occluded pattern is selected as the model for reconstructed pattern. The re-
constructed pattern for Fig. 1.7(a) is shown in Fig. 1.7(b). The MSE plot against
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iterations is shown in Fig. 1.7(c). Note that the MSE increases initially and then
stabilizes approximately around 630. This stabilized value is minimum compared to
all other stabilized MSEs using other reconstructed patterns derived from pattern
database.

The same experiment is repeated where the occluded region of the pattern of
Fig. 1.7(a) is filled with random dots. This is shown in Fig. 1.7(d). The corre-
sponding reconstructed pattern is the same as that of Fig. 1.7(b) and is shown in
Fig. 1.7(e). The MSE plot shown in Fig. 1.7(f) shows that the stabilized MSE
is slightly increased, as expected due to noise in the occluded region, at around
645. In both cases the correct pattern could be identified from the occluded and
noise-corrupted patterns.

(a) (b) (c)

(d) (e) (f)

Fig. 1.7. Pattern disocclusion using reaction-diffusion model based curve evolution.

This is further extended for patterns developed using shape optimization model.
The noise-corrupted pattern of Fig. 1.8(a) is successfully reconstructed as shown in
Fig. 1.8(b) where MSE is stabilized at around 60 (Fig. 1.8(c)), which is minimum
when the MSE of the noisy pattern is compared with the other reconstructed pat-
terns of Fig. 1.6.
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(a) (b) (c)

Fig. 1.8. Pattern disocclusion using shape optimization model.

1.5. Conclusions

In this paper a group of pattern generation methods is established as curve evo-
lution based technique. The curve evolution is achieved through geometric and
implicit function based level set method. We have also shown that given a pattern
database, pattern disocclusion problem can be solved from the minimum error be-
tween occluded and derived pattern. Note that the pattern database can contain
model parameters and there is no need to store the pattern itself. The extension
of this technique for generating textured images and quasi-periodic patterns like
human fingerprint etc. is what we are investigating now. At the same time suitable
intensity interpolation scheme can be integrated with curve evolution to generate
realistic rendering.
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Appendix I Given ‖∇w‖2 = |∇a|2 + |∇b|2, the gradient descent direction for
minimizing 1.12 is given by,

∂E
∂t = 1

2
∂
∂t

∫
Π
(|∇a|2 + |∇b|2)dx

⇒ ∂E
∂t =

∫
Π
|∇a| ∇a .∇at

|∇a| dx +
∫
Π
|∇b| ∇b .∇bt

|∇b| dx

⇒ ∂E
∂t =

∫
∂Π
∇a. at ~n ds− ∫

Π
div(∇a) atdx +

∫
∂Π
∇b. bt ~n ds − ∫

∂Π
div(∇b) btdx

⇒ ∂E
∂t = − ∫

Π
div(∇a) atdx − ∫

Π
div(∇b) btdx

⇒ ∂E
∂t =

∫
Π
〈−div(∇a), at〉 dx +

∫
Π
〈−div(∇b), bt〉 dx (using boundary conditions

specified in Section 1.3.1).
Appendix II
For the reference domain Ω0 consider its variation Ω = (Id + θ) Ω0 with θ ∈

W 1,∞(R2; R2). W 1,∞(R2; R2) is the space of all mappings from R2 to R2 which are
differentiable infinitely many times and Id is the identity mapping in W 1,∞(R2; R2).
The set Ω = (Id + θ )Ω0 is defined by Ω = {x + θ(x) |x ∈ Ω0} where the vector
field θ(x) is the displacement of Ω0. We consider the following definition of shape
derivative as the Frechet derivative.

Definition A: Let T be an operator on a normed space X into another normed
space Y. Given x ∈ X, if a linear operator dT (x) ∈ χ[X,Y ] exists such that
lim
‖h‖→0

‖T (x+h)−T (x)−dT (x)h‖
‖h‖ = 0 then dT (x) is said to be the Frechet derivative

of T at x, and T is said to be Frechet differentiable at x. χ[X, Y ] is the space
of bounded linear operators on a normed space X into another normed space Y.
The operator dT : X → χ[X, Y ], which assigns dT (x) to x is called the Frechet
derivative of T.

Definition B: The shape derivative of J(Ω) at Ω0 is the Frechet
derivative in W 1,∞(R2;R2) of θ → J((Id + θ)Ω0) at 0. Then,

lim
‖θ‖→0

‖J((Id+θ)(Ω0))−J(Ω0)−J′(Ω0)‖
‖θ‖ = 0. We apply the following results of shape

derivative.6

Result (B.1): If J1(Ω) =
∫
Ω

f(x) dx, then shape derivative of J1(Ω) at Ω0 is
given by, J ′1(Ω0) (θ) =

∫
Ω0

div (θ(x) f(x))dx =
∫

∂Ω0
θ(x).n(x) f(x)ds, where n(x ) is

the unit normal vector to ∂Ω0(boundary of Ω0) and for any θ ∈ W 1,∞(R2; R2).
Result (B.2): If J2(Ω) =

∫
∂Ω

f(x) ds, then shape derivative of J1(Ω) at Ω0 is
given by,

J ′2(Ω0) (θ) =
∫

∂Ω0
θ(x).n(x)( ∂f

∂n + H f ) ds, where H is the mean curvature of
∂Ω0 which is defined by, H = div (n (x)). Applying results (B.1) and (B.2), we get
shape derivative of compliance as J ′(Ω0) (θ) =

∫
Γ

θ(x).n(x)(2[∂(g.u)
∂n + H (g.u)] −

Ae(u)e(u)) ds , where Γ is the variable part of the boundary of the reference domain
Ω0, n(x ) is the normal unit vector to Γ, H is the curvature of Γ and u is the
displacement field solution space of −div (Ae (u)) = 0 in Ω0. By Cauchy-Schwartz
inequality we find a gradient descent field, which minimizes the objective function
as, θ = −v0 n and then update the shape as Ωt = (Id + ∆tθ)Ωt−1 with ∆t > 0 is
the time step.
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Table 1.1. Shape dimension and details of load and support to generate patterns of Fig. 1.6.
Fig. Shape dimension Unit load at nodes (load

direction - v -vertical, h-
horizontal, u-upwards, d-
downwards)

Support nodes along x-
directions (x :) and y-
directions (y:)

1.6(a) 60x20 (1,1) (v) x : (1,1) to (1,21)
y: (61,21)

1.6(b) 60x20 (1,1) (v) x : (1,1) to (1,21)
y: (61,1) to (61,21)

1.6(c) 32x20 (33,21) (v) x : (1,1) to (1,21)
y: (1,1) to (1,21)

1.6(d) 32x20 (16,10) (v) x : (1,21)
y: (33,21)

1.6(e) 61x31 (62,16) (v) x : (1,1) to (1,21)
y: (1,1) to (1,21)

1.6(f) 60x20 (30,21) (v) x : (1,21)
y: (61,21)

1.6(g) 60x20 (31,11) (v) x : (1,21)
y: (61,21)

1.6(h) 60x20 (31,1) (v, u)
(31,21) (v, d)

x : (1,1) to (1,21)
y: (1,1) to (1,21)
x : (61,1) to (61,21)
y: (61,1) to (61,21)

1.6(i) 60x20 (31,1) (v, u)
(31,21) (v, d)

x : (1,1) to (1,21)
y: (61,21)

1.6(j) 60x20 (31,1) (v, u)
(31,21) (v, d)

x : (1,1) to (1,21)
y: (1,1) to (1,21)
y: (61,21)

1.6(k) 45x45 (23,1) (v, u)
(23,46) (v, d)

y: (1,46)
y: (46,46)

1.6(l) 30x30 (31,1) (v, u)
(31,31) (v, d)

x : (1,1) to (1,31)
y: (1,1) to (1,31)

5(m) 60x20 (32,21) (v, u)
(28,21) (v, d)

y: (1,21)
y: (61,21)

1.6(n) 60x20 (15,1) (v, u)
(15,21) (v, d)

x : (1,1) to (1,21)
y: (1,1) to (1,21)
y: (61,1) to (61,21)

1.6(o) 45x30 with a hole of
radius 10, centered at
(15,15).

(46,31) (v, u) x : (1,1) to (1,31)
y: (1,1) to (1,31)
y: (46,1)
y: (46,31)

1.6(p) 45x30 with a hole of
radius 10, centered at
(15,15).

(46,15) (h) x : (1,1) to (1,31)
y: (1,1) to (1,31)

1.6(q) 45x30 with a hole of
radius 10, centered at
(15,15).

(46,1) (v, d)
(46,31) (v, u)

x : (1,1) to (1,31)
y: (1,1) to (1,31)


