
EuroCG 2011, Morschach, Switzerland, March 28–30, 2011

Certified Computation of Morse-Smale Complexes on Implicit Surfaces
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Abstract

The Morse-Smale complex is an important tool for
global topological analysis in various problems of com-
putational geometry and topology and data process-
ing. A certified algorithm for computing Morse-
Smale complexes has been presented in case of two-
dimensional gradient vector field in a bounded pla-
nar domain [3]. In the current article we extend the
approach to the computation of topologically correct
Morse-Smale complexes on smooth implicit surfaces
given by regular level sets of smooth functions. We
present an outline of our method and some implemen-
tation results.

1 Introduction

Extracting global topological information of an im-
plicit surface is an important problem in computa-
tional topology. One way to extract the global topo-
logical information of an implicit surface is by approx-
imating the surface with a simplicial complex followed
by a computation of its topological invariants, such
as homology groups, Betti numbers, genus etc. There
are many existing computational topology tools [4]
for doing such an analysis. A second and more direct
approach is to analyze the gradient field of a height
function on an implicit surface. However, analyzing
the gradient field of the height function can be done
via computing its Morse-Smale (MS) complex, which
is a configuration of singular points and separatrices of
the corresponding gradient system. The MS-complex
of a gradient system reveals the global topology of
the underlying shape. Since it is known that almost
all height functions are Morse functions, i.e., func-
tions having only non-degenerate critical points, and
by applying a small perturbation, a Morse function
could be transformed into a MS function (defined in
2). Therefore, computation of the topologically cor-
rect MS-complex of a height function, or more gen-
erally, of a MS-function on an implicit surface is a
worthwhile problem.

Existing algorithms for MS-complexes can compute
the complex of a piecewise linear manifold or, in other
words, of a discrete gradient-like vector field [6].
The topological correctness depends on how coarse
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the discretization is. On the other hand, we con-
sider the problem of computing a certified approxi-
mation of the MS-complex of a smooth implicit MS-
function. In other words we compute a configura-
tion of piecewise-linear curves which is isotopic to the
MS-complex on the implicit surface. Our algorithm
uses interval arithmetic to bring the computation into
the context of Exact Geometric Computation (EGC)
paradigm [8].

Our contribution. In the current paper, we present
an algorithm for computing a certified approximation
of the MS-complex of a smooth implicit MS-function
defined on an implicit surface. In particular, the al-
gorithm determines the followings.

• isolated certified boxes each containing a unique
saddle, source or sink, and each box has the local
topological property of a saddle, source or sink;

• certified initial and terminal intervals (corre-
sponding to a saddle), each of which is guaran-
teed to contain a unique point corresponding to
a saddle-source or saddle-sink connector (separa-
trix);

• disjoint certified strips, lying on the implicit sur-
face, around each separatrix, each of which con-
taining exactly one separatrix and can be made
as close to the separatrix as desired.

2 Preliminaries

Interval arithmetic (IA). Interval arithmetic is used
to cope with rounding errors in finite precision com-
putations. A range function �F for a function F :
Rm → Rn computes for each m-dimensional input
interval I (i.e., an m-box) an n-dimensional output
interval �F (I), such that F (I) ⊂ �F (I). A range
function is said to be convergent if the diameter of
the output interval converges to 0 when the diameter
of the input interval shrinks to 0.

Morse function. A function h : M ⊂ R3 → R, de-
fined on an implicit manifold M, is called a Morse

function if all its critical points are non-degenerate.
The Morse lemma [6] states that near a non-
degenerate critical point a it is possible to choose
local co-ordinates x, y in which h is expressed as
h(x, y) = h(a)± x2 ± y2. The number of minus signs
is called the index ih(a) of h at a. Thus a two variable
Morse function has three types of non-degenerate crit-
ical points: minima (index 0), saddles (index 1) and
maxima (index 2).
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Integral line. An integral line x : I ⊂ R → M pass-
ing through a point p0 onM(⊂ R3) is the unique max-
imal curve satisfying: ẋ(t) = grad h(x(t)), x(0) = p0,
for all t ∈ I. Here the gradient is defined with respect
to the metric inherited from R3. Integral lines cor-
responding to the gradient vector field of a smooth
function h : M → R have many interesting prop-
erties, such as: (1) any two integral lines are either
disjoint or coincide; (2) an integral line x : I → M
through a point p of h is injective and if lim

t→±∞
x(t)

exists, it is a critical point of h; (3) the function h is
strictly increasing along the integral line of a regular
point of h and integral; (4) regular integral lines are
perpendicular to regular level sets of h.

Stable and unstable manifolds. Consider the inte-
gral line x(t) passing through a point p. If the limit
lim
t→∞

x(t) exists, it is called the ω-limit of p and is

denoted by ω(p). Similarly, lim
t→−∞

x(t) is called the

α-limit of p and is denoted by α(p) – again provided
this limit exists. The stable manifold of a singular
point p is the set W s(p) = {q ∈ M | ω(q) = p}. Sim-
ilarly, the unstable manifold of a singular point p is
the set Wu(p) = {q ∈ M | α(q) = p} [7]. Here we
note that both W s(p) and Wu(p) contain the singu-
lar point p itself [7]. The components of W s(p) \ {p}
(Wu(p) \ {p}) are called stable (unstable) separatri-
ces. Each saddle has two stable and two unstable
separatrices.

The Morse-Smale (MS) complex. A Morse func-
tion on M is called a MS-function if its stable and
unstable manifolds intersect transversally. Since M
is a 2-dimensional surface, this means that stable and
unstable separatrices are disjoint. In particular, there
are no saddle-saddle connections. The MS-complex
associated with a MS-function h on M is the sub-
division of M formed by the connected components
of the intersections W s(p) ∩Wu(q), where p, q range
over all singular points of h. According to the quad-
rangle lemma [6], each region of the MS-complex is
a quadrangle with vertices of index 0, 1, 2, 1, in this
order on the boundary of the region.

Jacobi set. Let us consider two Morse functions
f,H : R3 → R. Let c be a regular value of f and
then by implicit function theorem Mc := f−1(c) is a
smooth 2-manifold. Then generically, the restriction
hc of H to the regular level set Mc of f is a Morse
function [5]. The critical points of H restricted to a
level set of the function f correspond to points where
∇f is a multiple of ∇H , i.e., the points where the Ja-
cobian of the map F = (f,H) : R3 → R2 has rank <
2. The Jacobi set J(f,H) (or J for short) is the closure
of the set of critical points of such level set restrictions
J(f,H) = cl{x ∈ Mc : x is a critical point of hc}, for
any regular value c ∈ R. From the Smooth Embed-
ding Theorem [5] we have, generically, that the Ja-

cobi set of two Morse functions f,H : R3 → R is a
smoothly embedded 1-manifold in R3.

3 Method

Problem set-up. Let f : R3 → R be a C2 function,
and let zero be a regular value of f . Then the set
M = {x ≡ (x, y, z) ∈ R3 : f(x) = 0} is a regular
surface (Follows from the implicit function theorem).
Let H : R3 → R be a Morse function such that H
has no critical point on M. Then, generically, the
function h : M → R, defined by h = H |M, is a Morse
function. We assume h is a MS-function. Then the
corresponding gradient field is a MS-system. We are
interested in computing the MS-complex of gradh.

Gradients on surfaces. First we analyze the vec-
tor field gradh by finding its singularities and their
types. We have assumptions: (1) zero is a regular
value of f and (2) H has no critical point on M =
f−1(0). For a C2 function h on a compact manifold
M the gradient vector field grad h on M is charac-
terized as follows: for p ∈ M and gradh(p) ∈ TpM,
〈gradh(p), v〉 = dvh(p), ∀v ∈ TpM. Here, dvh is
called the directional derivative of h along v. Again
from figure 1, we note that

gradh(p) = projM∇H(p) = ∇H(p)− (∇H(p).n̂)n̂

= ∇H(p)−
∇f(p) · ∇H(p)

‖∇f(p)‖2
∇f(p).

Here n̂ is the unit normal vector at point p of the
implicit surface M.

gradh

∇H

(∇H.n̂)n̂

p

Figure 1: Tangential and normal components of ∇H .

Local expression in a parametric domain. Let
fz(p) 6= 0 at p ∈ M. Then locally near p the man-
ifold M can be parametrized by a map τ : U → R3

of the form τ(x, y) = (x, y, g(x, y)), where U is an
open subset of R2. Let q ∈ U be the point in U corre-
sponding to p, i.e., τ(q) = p. Let us consider h̃(x, y) =
H(x, y, g(x, y)), locally in U . Then we denote the lo-
cal gradient field as ∇h̃ where h̃x = Hx − fx

fz
Hz and

h̃y = Hy − fy
fz
Hz. Similarly, one can derive local ex-

pressions of the gradient field on the yz and zx-plane,
by assuming fx 6= 0 and fy 6= 0 respectively.
Again the integral curves of gradh (on M) are

projected onto integral curves of the vector field
gradτ∗Gh̃ on U ⊆ R2 given by,

X =
1

f2
x + f2

y + f2
z

(

(f2

y + f2

z )Hx − fxfy Hy − fxfz Hz

−fxfy Hx + (f2

y + f2

z )Hy − fyfz Hz

)

.
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In particular, the integral curves of gradh are
mapped onto those of gradτ∗Gh̃ by the projection τ−1

of the neighborhood τ(U) of p inM onto the xy-plane.
Note that a singular point (x0, y0, z0) ∈ M of

gradh has the same type (saddle, sink or source)
as the point (x0, y0), considered as a singular point
of ∇h̃ (even though the integral curves of the latter
gradient are different from the projections of the in-
tegral curves of gradh). We use this observation in
the following analysis of saddles, sinks and sources.
To determine the type (minima, maxima or saddle)

and nature (degenerate or non-degenerate) of the crit-
ical points we consider the bordered Hessian matrix,
which is expressed as:

HL =









0 −fx −fy −fz
−fx Lxx Lxy Lxz

−fy Lxy Lyy Lyz

−fz Lxz Lyz Lzz









.

where Lxx = Hxx−
Hz

fz
fxx etc. Let detHL be the cor-

responding determinant. The following theorem [9]
gives a necessary and sufficient condition for h to have
a critical point.

Theorem 1 Let X be open in R3 and let f,H : X →
R be functions of class C2 such that 0 is a regular value
of f . Let M be the manifold {x ∈ X : f(x) = 0} and
let x0 be a point on M. Then h (the restriction of H
to M) has a critical point at x0 iff there exists some
scalar λ such that ∇H(x0) = λ∇f(x0).

Monotonicity of f on J. Finally, for certified isola-
tion of a critical point of h inside a box I we first prove
that along each component of the Jacobi set J, inside
I, function f is monotonic in the following theorem:

Theorem 2 Consider a box I, in the domain of the
function f , satisfying (i) I ∩ M 6= ∅, (ii) ∇f 6= 0,
(iii) ∇H 6= 0, (iv) detHL 6= 0. Then if I ∩ J 6=
∅, 1. J is regular, 2. J can have at most finitely
many components inside I, 3. Each component of J
is transversal to M inside I, 4. f is monotonic along
each component of I ∩ J.

Isolating and detecting critical points of h. Here
we describe the first step of our MS-complex compu-
tation method. Let us consider a three-dimensional
bounding box, say B, that contains the implicit sur-
face M. Now the subdivision algorithm subdivides
the box B until for each subinterval, I say, it is possi-
ble to determine whether h has a unique critical point
inside I or not. The subdivision process is driven by
the following set of conditions:

(i) C1 : 0 ∈ �f(I)

(ii) C2 : o ∈ �∇H(I)×�∇f(I)

(iii) C3 : 〈�∇f(I),�∇f(I)〉 > 0

(iv) C4 : 0 /∈ �∇H(I)

(v) C5 : 0 /∈ det�HL(I)

Figure 2: Finding Critical Boxes by domain subdivision

In the subdivision process, if ¬C1 holds for an in-
terval I then I does not contain a zero of f and we
stop further subdivision of I. In the subdivision pro-
cess, if ¬C2 holds, then we stop further subdividing
that interval I, since by Theorem 1, in that case I
is not a possible candidate for containing a critical
point of h. C3 is a small normal variaton condition
ensuring parametrizability of M∩ I. C4 ensures the
non-singularity of functionH in I. Finally, C5 ensures
that the number of critical points of h in I is at most
one. The following subdivision algorithm isolates the
critical points of a MS-function h in a bounding box
B

Algorithm. SearchCritical(h,B)

1. Initialize an octree T to the bounding box B.

2. Subdivide T until for all the leaves I we have:

¬C1 ∨ ¬C2 ∨ (C3 ∧C4 ∧ C5).

3. For each leaf Il

4. Do if C1, C2, C3, C4 and C5 hold then

5. Check if J(f,H) ∩M 6= ∅ inside Il.

6. If intersection found, the leaf contains
a critical point of h. Denote this leaf as Ic.

7. Else, the leaf does not contain a criti-
cal point of h.

Now the following corollary of theorem 2 gives a
strategy to determine whether inside Il J(f,H) ∩M
is ∅ or not.

Corollary 3 Let Il be a leaf interval, obtained by
SearchCritical (Il can contain at most one critical
point of h). Assume that (i) the Jacobi set J(f,H)
intersects the faces of Il transversally, and (ii) there is
no critical point of h lying on a face of Il. Let npos be
the number of intersection points of J(f,H) with the
six faces of Il, where f is positive. Again let nneg be
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M

Il

Figure 3: Components of the Jacobi set inside Il.

the number of intersection points of J(f,H) with six
faces of Il, where f is negative. If both npos and nneg

are odd numbers, then there is exactly one critical
point of h inside Il. Otherwise, there is no critical
point of h inside Il.

Here we note that the assumptions in the corollary 3
ensure only the non-degenerate cases. In the full arti-
cle, cf [2], we describe how to handle degenerate cases
with small perturbation of interval I.

Refinement of intervals containing critical points.
Next we further refine the boxes Ic as in the planar
vector field situation, see [3, 2]. In the current sit-
uation we use the vector field X projected onto one
of the faces of Ic, and after refinement use the corre-
sponding pull-back vector field on M.

Figure 4: Representing a curve on the implicit surface by
the intersection of plane-segments and the surface.

Algorithm for computing separatrices. We com-
pute small rectangular plane-segments, transversal to
the implicit surface, such that the intersections of
these pieces of planes and the implicit surface together
represent a boundary curve of the strip (Figure 4)
which contains a separatrix. The gradient vector field
gradh must satisfy an orientation property which is
along the left (for the right boundary curve) and along
the right (for the left boundary curve). This will en-
sure that each separatrix lies in the corresponding
strip. The details of this method are discussed in the
full version of the article, cf [2].

Implementation results. We implemented of our al-
gorithm using Boost library [1] for IA. All experi-
ments have been performed on a 3GHz Intel Pen-
tium 4 machine under Linux with 1 GB RAM using

the g++ compiler, version 3.3.5. Figure 5 show MS-
complexes consisting of saddles (red boxes), minima
(green boxes) and maxima (blue boxes). Moreover, a
pair of blue boundary curves contains a certified un-
stable separatrix (saddle-maximum connection) and a
pair of green boundary curves contains a stable sepa-
ratrix (saddle-minimum connection).

(a) (b)

Figure 5: Certified MS-complexes on implicit functions
given by f1(x, y, z) ≡ (x2+y2+ z2 −R2

− r2)2−4R2(r2−
x2) = 0 and f2(x, y, z) ≡ x4

−5x2+y4
−5y2+z4−5z2+10 =

0 where we consider H(x, y, z) = z.

Conclusion. We give a novel approach for comput-
ing the certified MS-complex on implicit surfaces. In
the end some implementation results are given to give
a proof of concept and to justify those algorithms.
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