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RBF Method-Shape
Reconstruction

Shape Reconstruction.

• Application: CAD, Medical Imaging, Computer Graphics

• Input: Finite set of centers V = {v1, v2, . . . , vn} sampled from
a smooth surface

•Output: PL-approximation of the zero level set of the radial
basis function (RBF) interpolant s, such that s(vk) = 0, where

s(x) =

n∑
k=1

wk ϕ(||x− vk||) + p(x).

• RBF Examples: (i) Linear: r, (ii) Triharmonic: r3, (iii) Thin
Plate Spline: r2 log r, (iv) Multiquadric:

√
1 + r2, (v) Gaussian:

e−r2
etc.

Two-step Method:

1. Constructing the RBF-interpolant s such that shape (to be re-
constructed) is implicitly defined by the zero set,

2. Meshing of the zero level set of s for geometry processing.

Certified Meshing Algorithm
Certified Meshing. Approximating mesh is isotopic to the im-
plicit surface, based on interval arithmetic.

Certified Meshing Algorithm (CMA) [6]:

ApproximateSurface (s, B)

1. Initialize octree T to box B;
2. Subdivide T until for all leaves I :

0 /∈ �s(I) ∨ 〈�∇s(I), �∇s(I)〉 > 0

3. BalanceOctree(T )
4. Mesh(T ).

Range Function. Range Function �F for F : Rm → Rn com-
putes an n-dimensional interval �F (I) for each m-dimensional
interval I s.t. F (I) ⊂ �F (I)

Predicates:

• 0 /∈ �F (I): Range does not contain zero,

• 〈�∇F (I), �∇F (I)〉 > 0: Small Normal Variation.

Research Problem
• Issue: Performance of CMA for RBF interpolants is poor when

Interval Arithmetic (IA) or Affine Arithmetic (AA) is used for
computing the predicates.

• Contribution: Reducing Space and Time complexity of CMA
by efficient computation of �s(I) and �sx(I), �sy(I), �sz(I)
for RBF Interpolant s

Example :

To find the range interval of the sum of f (x) = x2 and g(x) =
(1− x)2 over I = [0, 1].

• The actual range interval [0.5, 1].

• Using IA. �f (I) + �g(I) = [0, 1] + [0, 1] = [0, 2]

• Using AA. First, the variable x is expressed in affine form (AF)
x̂ = 0.5 + 0.5ε1. Then, affine forms corresponding to f (x)
and g(x) are computed as ẑ1 = 0.25 + 0.5ε1 + 0.25ε2 and
ẑ2 = 0.25 − 0.5ε1 + 0.25ε2. Therefore, the AF correspond-
ing to sum is ẑ = 0.5 + 0.0ε1 + 0.25ε2 + 0.25ε3. Here, εi s are
symbolic variables whose values are in interval [−1, +1]. Hence,
the range interval corresponding to the sum is [0, 1].

Strategies

Bounding Plane Bounding Quadric (BPBQ).

• Find upper and lower bounding planes corresponding to graph
of each component function.

• Add respective linear functions to obtain a linear lower and upper
bound for computing �F (I).

• A quadratic upper and lower bound is computed for computing
�∇F (I).

Example: Range Intervals Using Different Strategies.

Bounding Paraboloid (BParab) for RBF.

• Based on the observation that the summand of the RBF-
interpolant wkϕ(‖x − vk‖) is radially symmetric with respect
to the center vk.

• Find upper and lower bounds of the form αkr
2 +βk for the uni-

variate function wkϕ(r) for r ranging over the smallest interval
Jk = [r1, r2] for which r2

1 ≤ ‖x− vk‖2 ≤ r2
2, for all x ∈ I .

• Obtain quadratic upper and lower bound of s over I by summing
them up.

• Compute the maximum and minimum values of these upper and
lower bounds over I , say U(I) and L(I), respectively. Thus
�s(I) = [L(I), U(I)].

• Computing �∇s(I) is similar.

Subdivision. To improve the performance even further a hybrid
approach has been designed in which the BParab and BPBQ strate-
gies are extended by a preliminary subdivision of the boxes. Since
∪n

i=1�s(Ii) ⊆ �s(∪n
i=1Ii), the range intervals �s(I) and �∇s(I)

might become smaller by first subdividing the interval I into n
subintervals I1, . . . , In, followed by computing the range intervals
�s(Ii) for each subinterval Ii.

Convergence. The approximation error in the range interval us-
ing the AA, BPBQ or BParab strategy depend quadratically on the
size of the input interval, where as, for IA this dependency is linear.

Results

Figure 4: Isocurve extraction for a multiquadric RBF-interpolant
(49 centers) of the function 4y2 − (x + 1)3(1 − x), sampled uni-
formly on the square [−1.1, 1.1] × [−1.1, 1.1] using strategies: (i)
AA and (ii) BPARAB.

Comparison of Space and Time Complexity.
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Figure 5: (i)number of centers vs. CPU-time, (ii)number of cen-
ters vs. number of leaves of the subdivision tree

Figure 6: Isocurve extraction for a multiquadric RBF-interpolant
(25 centers) of the function (y − x2 + 1)4 + (x2 + y2)4 − 1 = 0,
sampled uniformly on the square [−1.2, 1.2]× [−1.4, 1.0] using (i)
AA and (ii) BPARAB.

Figure 7: Meshing of some RBF-based Isosurfaces (using BParab
Strategy).

Conclusion
IA has unacceptable performance, AA converges in most experi-
ments but its performance is poor. The BParab-strategy works
efficiently for almost all well-known RBFs, and the BPBQ-strategy
gives comparable results for cubic RBFs.

Open Questions.

• To find a good sampling criteria such that the zero level set of
the corresponding RBF-interpolant is certified.

• Instead of subdividing the whole domain of the implicit func-
tion, one could try to find a subset containing the zero set of
the implicit function.

• Finally, the range �sx(I)�sx(I) + �sy(I)�sy(I) is a superset
of 〈�∇s(I), �∇s(I)〉. Therefore, there is enough opportunity
for improving the performance of the meshing algorithm.
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