Certified Meshing of RBF-based Isosurfaces

Amit Chattopadhyay
amit@cs.rug.nl

Simon Plantinga
simon@cs.rug.nl

Gert Vegter
G.Vegter@rug.nl

RBF Method-Shape Reconstruction

Shape Reconstruction.

- Application: CAD, Medical Imaging, Computer Graphics

- Input: Finite set of centers $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ sampled from a smooth surface
- Output: PL-approximation of the zero level set of the radial basis function (RBF) interpolant s, such that $s\left(v_{k}\right)=0$, where

$$
s(\underline{\mathbf{x}})=\sum_{k=1}^{n} w_{k} \varphi\left(\left\|\underline{\mathbf{x}}-v_{k}\right\|\right)+p(\underline{\mathbf{x}}) .
$$

- RBF Examples: (i) Linear: r, (ii) Triharmonic: r^{3}, (iii) Thin Plate Spline: $r^{2} \log r$, (iv) Multiquadric: $\sqrt{1+r^{2}}$, (v) Gaussian $e^{-r^{2}}$ etc.

Two-step Method:

1. Constructing the RBF-interpolant s such that shape (to be reconstructed) is implicitly defined by the zero set,
2. Meshing of the zero level set of s for geometry processing.

Certified Meshing Algorithm

Certified Meshing. Approximating mesh is isotopic to the im plicit surface, based on interval arithmetic.

Certified Meshing Algorithm (CMA) [6]:
ApproximateSurface (s, B)

1. Initialize octree T to box B
2. Subdivide T until for all leaves I :
$0 \notin \square s(I) \vee\langle\square \nabla s(I), \square \nabla s(I)\rangle>0$
3. BalanceOctree(T)
4. $\operatorname{Mesh}(T)$.

Range Function. Range Function $\square F$ for $F: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ computes an n-dimensional interval $\square F(I)$ for each m-dimensional interval I s.t. $F(I) \subset \square F(I)$

Predicates

- $0 \notin \square F(I)$: Range does not contain zero
- $\langle\square \nabla F(I), \square \nabla F(I)\rangle>0$: Small Normal Variation.

Research Problem

- Issue: Performance of CMA for RBF interpolants is poor when Interval Arithmetic (IA) or Affine Arithmetic (AA) is used for computing the predicates.
- Contribution: Reducing Space and Time complexity of CMA by efficient computation of $\square s(I)$ and $\square s_{x}(I)$, $\square s_{y}(I)$, $\square s_{z}(I)$ for RBF Interpolant s

Example :

To find the range interval of the sum of $f(x)=x^{2}$ and $g(x)=$ $(1-x)^{2}$ over $I=[0,1]$.

- The actual range interval $[0.5,1]$.
- Using IA. $\square f(I)+\square g(I)=[0,1]+[0,1]=[0,2]$
- Using AA. First, the variable x is expressed in affine form (AF) $\hat{x}=0.5+0.5 \epsilon_{1}$. Then, affine forms corresponding to $f(x)$ and $g(x)$ are computed as $\hat{z}_{1}=0.25+0.5 \epsilon_{1}+0.25 \epsilon_{2}$ and $\hat{z}_{2}=0.25-0.5 \epsilon_{1}+0.25 \epsilon_{2}$. Therefore, the AF corresponding to sum is $\hat{z}=0.5+0.0 \epsilon_{1}+0.25 \epsilon_{2}+0.25 \epsilon_{3}$. Here, $\epsilon_{i} \mathrm{~s}$ are symbolic variables whose values are in interval $[-1,+1]$. Hence the range interval corresponding to the sum is $[0,1]$.

Strategies

Bounding Plane Bounding Quadric (BPBQ).

- Find upper and lower bounding planes corresponding to graph of each component function.
- Add respective linear functions to obtain a linear lower and upper bound for computing $\square F(I)$
- A quadratic upper and lower bound is computed for computing $\square \nabla F(I)$.

Example: Range Intervals Using Different Strategies.

Bounding Paraboloid (BParab) for RBF.

- Based on the observation that the summand of the RBFinterpolant $w_{k} \varphi\left(\left\|\underline{\mathbf{x}}-v_{k}\right\|\right)$ is radially symmetric with respect to the center v_{k}.
- Find upper and lower bounds of the form $\alpha_{k} r^{2}+\beta_{k}$ for the univariate function $w_{k} \varphi(r)$ for r ranging over the smallest interval $J_{k}=\left[r_{1}, r_{2}\right]$ for which $r_{1}^{2} \leq\left\|\underline{\mathrm{x}}-v_{k}\right\|^{2} \leq r_{2}^{2}$, for all $\underline{\mathrm{x}} \in I$.
- Obtain quadratic upper and lower bound of s over I by summing them up.
- Compute the maximum and minimum values of these upper and lower bounds over I, say $U(I)$ and $L(I)$, respectively. Thus $\square s(I)=[L(I), U(I)]$.
- Computing $\square \nabla s(I)$ is similar.

Subdivision. To improve the performance even further a hybrid approach has been designed in which the BParab and BPBQ strategies are extended by a preliminary subdivision of the boxes. Since $\cup_{i=1}^{n} \square s\left(I_{i}\right) \subseteq \square s\left(\cup_{i=1}^{n} I_{i}\right)$, the range intervals $\square s(I)$ and $\square \nabla s(I)$ might become smaller by first subdividing the interval I into n subintervals I_{1}, \ldots, I_{n}, followed by computing the range intervals $\square s\left(I_{i}\right)$ for each subinterval I_{i}

Convergence. The approximation error in the range interval using the $\mathrm{AA}, \mathrm{BPBQ}$ or BParab strategy depend quadratically on the size of the input interval, where as, for IA this dependency is linear.

Figure 4: Isocurve extraction for a multiquadric RBF-interpolant (49 centers) of the function $4 y^{2}-(x+1)^{3}(1-x)$, sampled uniformly on the square $[-1.1,1.1] \times[-1.1,1.1]$ using strategies: (i) $A A$ and (ii) BPARAB

Figure 6: Isocurve extraction for a multiquadric RBF-interpolant (25 centers) of the function $\left(y-x^{2}+1\right)^{4}+\left(x^{2}+y^{2}\right)^{4}-1=0$, sampled uniformly on the square $[-1.2,1.2] \times[-1.4,1.0]$ using (i) $A A$ and (ii) BPARAB.

Figure 7: Meshing of some RBF-based Isosurfaces (using BParab Strategy).

Conclusion

IA has unacceptable performance, AA converges in most experiments but its performance is poor. The BParab-strategy works efficiently for almost all well-known RBFs, and the BPBQ-strategy gives comparable results for cubic RBFs.

Open Questions.

- To find a good sampling criteria such that the zero level set of the corresponding RBF-interpolant is certified.
- Instead of subdividing the whole domain of the implicit function, one could try to find a subset containing the zero set of the implicit function
- Finally, the range $\square s_{x}(I) \square s_{x}(I)+\square s_{y}(I) \square s_{y}(I)$ is a superset of $\langle\square \nabla s(I), \square \nabla s(I)\rangle$. Therefore, there is enough opportunity for improving the performance of the meshing algorithm.

References

[1] J.-D. Boissonnat, D. Cohen-Steiner, and G. Vegter. Isotopic implicit surface meshing. Discrete and Computational Geometry, 39:138-157, 2008
[2] A. Chattopadhyay, S. Plantinga, and G. Vegter. Certified Meshing of RBF-based Isosurfaces. Abstracts of the 25th European Workshop on Computational Geometry, Brussels, Belgium, 101-104, 2009.
[3] L. H. de Figueiredo and J. Stolfi. Affine arithmetic: Concepts and applications. Numerical Algorithms., 00:1-13., 2003.
[4] A. Iske. Scattered data modelling using radial basis functions. In A. Iske, E. Quak, and M. S. Floater, editors, Tutorials on Multiresolution in Geometric Modelling, Mathematics and Visualization, pages 287-315. Springer-Verlag, Heidelberg, 2002.
[5] R. Martin, H. Shou, I. Voiculescu, A. Bowyer, and G. Wang. Comparison of interval methods for plotting algebraic curves Comput. Aided Geom. Des., 19(7):553-587, 2002.
[6] S. Plantinga and G. Vegter. Isotopic meshing of implicit surfaces. The Visual Computer, 23:45-58., 2007

