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RBF Method-Shape
Reconstruction

Shape Reconstruction.
e Application: CAD, Medical Imaging, Computer Graphics
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e Input: Finite set of centers V' = {vy,v9, ..., v,} sampled from

a smooth surface

e Output: PlL-approximation of the zero level set of the radial
basis function (RBF) interpolant s, such that s(v;.) = 0, where

s(x) =Y wge(|lx — vgl]) + plx).

k=1

e RBF Examples: (i) Linear: 7, (i) Triharmonic: 72, (iii) Thin
Plate Spline: 7 log r, (iv) Multiquadric: v/1 + 72, (v) Gaussian:
e~ etc.

Two-step Method:

1. Constructing the RBF-interpolant s such that shape (to be re-

constructed) is implicitly defined by the zero set,

2. Meshing of the zero level set of s for geometry processing.

Certified Meshing Algorithm

Certified Meshing. Approximating mesh is isotopic to the im-
plicit surface, based on interval arithmetic.

Certified Meshing Algorithm (CMA) [6]:

APPROXIMATESURFACE (s, B)

1. Initialize octree T’ to box B;
2. Subdivide T until for all leaves I:

0 ¢ Os(I) Vv (OVs(I),OVs(I)) > 0

3. BALANCEOCTREE(T)
4. MESH(T).

Range Function. Range Function LJF for F' : R — R" com-
putes an n-dimensional interval LIF'(I) for each m-dimensional

interval [ s.t. F(I) C OF ()

Predicates:
e 0 ¢ LIF(I): Range does not contain zero,
o (UIVF(I),00VF(I)) > 0: Small Normal Variation.

Research Problem

e Issue: Performance of CMA for RBF interpolants is poor when
Interval Arithmetic (IA) or Affine Arithmetic (AA) is used for
computing the predicates.

e Contribution: Reducing Space and Time complexity of CMA
by efficient computation of Us(/) and Os, (1), Osy (1), s, (1)
for RBF Interpolant s

Example :

To find the range interval of the sum of f(z) = 22 and g(z) =
(1 — )% over I =[0,1].

e The actual range interval [0.5, 1].
e Using IA. LIf (1) + Og(I) =[0,1]+[0,1] = [0, 2]

e Using AA. First, the variable x is expressed in affine form (AF)
r = 0.5 4 0.5¢;. Then, affine forms corresponding to f(x)
and g(x) are computed as z2; = 0.25 + 0.5¢; + 0.25¢9 and
2o = 0.25 — 0.5¢1 + 0.25¢9. Therefore, the AF correspond-
ing to sum is 2 = 0.5 + 0.0e1 + 0.25e9 4 0.25€3. Here, €; s are
symbolic variables whose values are in interval |[—1, +1|. Hence,
the range interval corresponding to the sum is |0, 1].
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Strategies

Bounding Plane Bounding Quadric (BPBQ).

e Find upper and lower bounding planes corresponding to graph
of each component function.

e Add respective linear functions to obtain a linear lower and upper
bound for computing LIF'(]).

e A quadratic upper and lower bound is computed for computing

OV F(I).
Example: Range Intervals Using Different Strategies.
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Bounding Paraboloid (BParab) for RBF.

e Based on the observation that the summand of the RBF-
interpolant wz.(||x — vz||) is radially symmetric with respect
to the center v;.

e Find upper and lower bounds of the form a.7> 4 ;. for the uni-
variate function wpp(r) for r ranging over the smallest interval
Jj. = [r1, 9] for which 7% < ||x — v,||* < 73, forall x € 1.

e Obtain quadratic upper and lower bound of s over I by summing
them up.

e Compute the maximum and minimum values of these upper and
lower bounds over I, say U(I) and L([I), respectively. Thus
Us(I) = [L(I), U(I)].

e Computing 1V s([) is similar.

Subdivision. To improve the performance even further a hybrid
approach has been designed in which the BParab and BPBQ strate-
gies are extended by a preliminary subdivision of the boxes. Since
Ui Os(1;) € Os(UY1;), the range intervals Lls(1) and LIV s([)
might become smaller by first subdividing the interval I into n
subintervals Iy, ..., I, followed by computing the range intervals
[Js(1;) for each subinterval I;.

Convergence. The approximation error in the range interval us-
ing the AA, BPBQ or BParab strategy depend quadratically on the
size of the input interval, where as, for |A this dependency is linear.

ing of RBF-based

Isosurfaces
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Figure 4: Isocurve extraction for a multiquadric RBF-interpolant
(49 centers) of the function 4y> — (x 4+ 1)3(1 — z), sampled uni-
formly on the square |—1.1,1.1] x |—1.1, 1.1| using strategies: (i)
AA and (ii) BPARAB.

Comparison of Space and Time Complexity.
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Figure 5: (i)number of centers vs. CPU-time, (ii)number of cen-
ters vs. number of leaves of the subdivision tree

Figure 6: /socurve extraction for a multiquadric RBF-interpolant
(25 centers) of the function (y — z° + 1)* + (2> + y>)* — 1 =0,
sampled uniformly on the square [—1.2,1.2] x |—1.4,1.0] using (i)
AA and (ii) BPARAB.

Figure 7: Meshing of some RBF-based Isosurfaces (using BParab
Strategy).

Conclusion

|A has unacceptable performance, AA converges in most experi-
ments but its performance is poor. The BParab-strategy works
efficiently for almost all well-known RBFs, and the BPBQ-strategy
gives comparable results for cubic RBFs.

Open Questions.

e To find a good sampling criteria such that the zero level set of
the corresponding RBF-interpolant is certified.

e Instead of subdividing the whole domain of the implicit func-
tion, one could try to find a subset containing the zero set of
the implicit function.

e Finally, the range Usy(1)0sy (1) + Osy(1)Osy (1) is a superset
of (OVs(I),dVs(I)). Therefore, there is enough opportunity

for improving the performance of the meshing algorithm.
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