
Certified Meshing of RBF-based Isosurfaces

Amit Chattopadhyay∗ Simon Plantinga † Gert Vegter‡

Abstract

Radial Basis Functions are widely used in scattered
data interpolation. The process consists of two steps:
(i) computing an interpolating implicit function the
zero set of which contains the points in the data
set, followed by (ii) extraction of isocurves or isosur-
faces. We focus on the second step, generalizing our
earlier work on certified meshing of implicit surfaces
based on interval arithmetic. It turns out that in-
terval arithmetic, and even the usually faster affine
arithmetic, are far too slow in the context of RBF-
based implicit surface meshing. We present optimized
strategies giving acceptable running times and bet-
ter space complexity, exploiting special properties of
RBF-interpolants. We present pictures and timing
results confirming the improved quality of these opti-
mized strategies.

1 Introduction

RBF-based interpolants. Radial Basis Functions
provide a simple meshless method for reconstruc-
tion of smooth geometric objects in the plane or in
three-dimensional space from a finite point sample
v1, . . . , vn. The process consists of two steps: (i) com-
puting an interpolating implicit function the zero set
of which contains the sample points, followed by (ii)
extraction of the isocurve or isosurface.

The Radial Basis interpolant constructed in step (i)
is of the form

s(x) =
n

∑

k=1

wk ϕ(||x − vk||) + p(x), (1)

where x ∈ R
d, for d = 2, 3, such that s is zero at the

sample points (centers) vk. Here p is a polynomial of
low degree, cf [5]. The Radial Basis Function (RBF)
ϕ is a univariate function. Some popular RBFs are
ϕ(r) = r3 (thin plate spline in 3D), ϕ(r) = r2 log r
(thin plate spline in 2D), ϕ(r) =

√
r2 + c2 (multi-

quadric), ϕ(r) = exp(−r2) (Gaussian).

The second step, namely isosurface extraction, is
our main focus. In [9] we use interval arithmetic (IA)
to extract regular level sets of a general smooth (C1)

∗Corresponding author. University of Groningen, The

Netherlands; email: A.Chattopadhyay@rug.nl
†Email: S.Plantinga@rug.nl
‡Email: G.Vegter@rug.nl

implicit function. More precisely, the algorithm com-
putes a piecewise linear surface which is close (iso-
topic) to the actual zero set, and is guaranteed to have
the same topology. It is akin to the Marching Cubes
algorithm in the sense that it analyzes the topology
of the isosurface on boxes in the plane or in space. If
it cannot decide that the topology is correct, it subdi-
vides the box. However, interval arithmetic converges
very slowly for implicit functions like (1), i.e., sums
consisting of a large number of terms.

Our contribution. Our early experiments show that
even the straightforward use of affine arithmetic
(AA) [4], a fine tuned version of IA, does not im-
prove running times sufficiently. Therefore, we de-
veloped an improved strategy uses linear upper and
lower bounds, exploiting the fact that each term in
the sum is of the same form. This strategy works
for certain RBFs, and leads to spectacular improve-
ment of the running time, since far less subdivisions
of boxes are needed before the algorithm can decide
that the topology is correct. Since such linear bounds
are not easy to obtain for all types of RBFs we also
developed a more general method based on quadratic
bounding functions, which works for commonly used
RBFs. Finally, we give pictures and performance re-
sults confirming the improved quality of the optimized
strategy in terms of time and space complexity.

Related Work. Current methods for meshing RBF-
based implicit surfaces do not come with topological
guarantees, since they are usually based on the march-
ing cubes algorithm [7]. Methods for certified meshing
of implicit surfaces are presented in [3, 10]. In [9] in-
terval arithmetic is used to extract certified meshing
of implicit surfaces. For an overview of interval arith-
metic methods and their optimizations we refer to [8].
Affine arithmetic is discussed in [4].

2 Preliminaries

Interval Arithmetic (IA). Interval arithmetic is used
to prevent rounding errors in finite precision computa-
tions. A range function �F for a function F : R

m →
R

n computes for each m-dimensional interval I (i.e.,
an m-box) an n-dimensional interval �F (I), such that
F (I) ⊂ �F (I). A range function is said to be conver-
gent if the diameter of the output interval converges
to 0 when the diameter of the input interval shrinks
to 0. Convergent range functions exist for the ba-
sic operators and functions, so all range functions are
assumed to be convergent.

1

Certified Meshing Algorithm. The certified mesh-
ing algorithm [9] subdivides the domain of an im-
plicit function until it can approximate the zero set
of the function in each box with a topologically cor-
rect piecewise linear surface. The algorithm takes an
implicit function F and a box B as input, and com-
putes a piecewise linear approximation of F−1(0)∩B,
assuming that the zero set F−1(0) of F contains no
singular points of F inside B. It uses range functions
for F and its gradient ∇F .

Algorithm: ApproximateCurve(F, B)

1. Initialize quadtree T to B;
2. Subdivide T until for all leaves I:

0 /∈ �F (I) ∨ 〈�∇F (I), �∇F (I)〉 > 0;
3. Mesh(T).

Here, Mesh(T) approximates the zero level set in-
side the box T by a linear function. The first clause
in line 2 discards cells I for which 0 /∈ �F (I), i.e.,
boxes which are guaranteed not to contain part of
the zero set of F . The second clause implies that
〈∇F (x),∇F (y)〉 > 0, for all x, y ∈ I, so the direction
of the gradient (and, therefore, of the curve) does not
change by more than π/2 over this box. This im-
plies that the zero set of F is parametrizable (i.e., can
be written as a function of x or y), which is the key
property in the proof of topological correctness of the
output. We refer to [9] for details.

3 Range functions for RBFs

Unfortunately, for RBF-based implicit functions s of
the form (1) an IA-based implementation of algorithm
ApproximateCurve(s, I) has unacceptable running
times. Our goal is to improve the performance con-
siderably by optimizing the range intervals �s(I) and
�∇s(I) for such RBF-interpolants s on a box I. We
restrict to the two-dimensional case, althought our
approach works in any dimension.

Computing �s(I). Our optimization strategy deter-
mines a lower bound lk(x) and an upper bound uk(x)
for wkϕ(||x − vk||) on the box I, such that the min-
imal value L(I) of l(x) :=

∑

k lk(x) + p(x) on I and
the maximum value U(I) of u(x) :=

∑

k uk(x) + p(x)
on I are easy to compute. Moreover, taking �s(I) =
[L(I), U(I)] should yield a much better range interval
than AI, or even AA.

Our approach is based on the observation that the
summand wkϕ(||x − vk||) is radially symmetric with
respect to the center vk. We will find quadratic upper
and lower bounds for the univariate function wk ϕ(r)
for r ranging over the smallest interval Jk = [r1, r2]
for which r2

1
≤ ||x − vk||2 ≤ r2

2
, for all x ∈ I. See

Figure 1. More precisely, the univariate upper bound

a b

I

vk

r1 r2

Figure 1: Near and far point of a square interval I. If
the center vk lies inside the box I, then r1 = 0.

of wkϕ(r) on Jk is of the form αkr2 + βk, yielding

s(x) ≤
n

∑

k=1

αk||x − vk||2 +

n
∑

k=1

βk + p(x),

for x ∈ I. Since, for most RBFs, the polynomial p
has degree at most two, the upper bound is a bivari-
ate quadratic function, obtained by adding the coef-
ficients of the upper bounds for each individual sum-
mand. Moreover, the maximum value U(I) of this up-
per bound on the interval I is easily computed. Due
to lack of space we just mention that for most RBFs
the coefficients αk and βk are determined in a rather
straightforward way by solving a simple optimization
problem, once for each type of RBF. A quadratic lower
bound for the RBF-interpolant s on I is determined
similarly. In view of the special shape of the quadratic
upper and lower bounds this approach is called the
bounding paraboloid strategy (BPARAB)

Computing �∇s(I). To find optimal ranges �sx(I)
and �sy(I) for the components of the gradient of the
RBF-interpolant (1), first note that sx is given by

sx(x) =

n
∑

k=1

wk

ϕ′(||x − vk||)
||x − vk||

(x − vkx) + px(x), (2)

where x = (x, y) and vk = (vkx, vky). Applying
the same approximation strategy as before we find
quadratic lower bounds on the one-dimensional inter-
val Jk for each of the univariate factors wk ϕ′(r)/r,
leading to a bivariate cubic lower bound Lk(x) on the
box I for the k-th summand in (2) of the form

Lk(x) = ak x (x2 + y2) + Qk(x),

where ak is a real constant, and Qk(x) is a quadratic
polynomial. A cubic upper bound Uk(x) of this form
is found similarly. A straightforward derivation yields
the minimal value of

∑

k Lk(x) + px(x) and the max-
imal value of

∑

k Rk(x) + px(x) on I, and, hence, a
good interval �sx(I). A good interval �sy(I) is com-
puted similarly.

As we will show in Section 4, this strategy improves
the performance of the certified meshing algorithm
ApproximateCurve considerably for various RBFs.

2

Bounding plane strategy for the cubic RBF. The
cubic RBF, given by ϕ(r) = r3, corresponds to the
thin plate spline in 3D, which is used widely in recon-
struction of geometric surfaces from scattered point
samples. Therefore, for this case we tried to design
an even better strategy based on special properties,
like convexity, of the RBF. More precisely, using well-
chosen linear upper and lower bounds, we were able
to improve the running time even further in some
cases. For experiments with this bounding plane strat-
egy (BP), corroborating this improvement, we refer to
Section 4.

4 Experimental results

We present some 2D experiments with algorithm
ApproximateCurve, implementing range functions
based on IA, AA, BPARAB and, for the cubic RBF,
the BP-strategy. We extract the zero sets of various
RBF-interpolants, and compare the number of leaves
(NOL) of the subdivision tree and the CPU-time
(CPU). The RBF-interpolants are constructed using
uniform sample interpolation points extracted from
several well-known functions, cf. [6], over a bounded
domain.

Figure 2: Isocurve extraction for a cubic RBF-
interpolant (100 centers) of the function xy(x−1)(y−
1)−0.02, sampled uniformly on the square [0, 1]×[0, 1]
using strategies: (i) AA , (ii) BP and (iii) BPARAB.

Figure 3: Isocurve extraction for a cubic RBF-
interpolant (100 centers) of the function (x2 +y2)(1−
√

x2 + y2) − 0.04, sampled uniformly on the square
[−1.2, 1.2] × [−1.2, 1.2] using strategies: (i) AA , (ii)
BP and (iii) BPARAB.

We used the Boost library [1] for IA, and the li-
brary [2] for AA. All experiments have been performed
on a 3GHz Intel Pentium 4 machine under Linux with
1 GB RAM using the g++ compiler, version 3.3.5.

Experiments with Cubic RBF. Our first sequence
of experiments has been performed using cubic-based
interpolants. In other words, we used the RBF given
by ϕ(r) = r3. Tables 1–3 presents the measured per-
formance for different optimization strategies. Fig-
ure 2–4 contain the corresponding isocurves, together
with the boxes corresponding to the leaf-nodes of our
subdivision tree.

Note that Table 1 shows that straigthforward use of
IA does not lead to convergence (in reasonable time),
except in trivial cases. Therefore, we discard IA from
our remaining experiments.

Figure 4: Isocurve extraction for a cubic based
RBF-interpolant (100 centers) of the function 4y2 −
(x + 1)3(1 − x), sampled uniformly on the square
[−1.1, 1.1] × [−1.1, 1.1] using strategies: (i) AA , (ii)
BP and (iii) BPARAB.

Experiments with Multiquadric RBF. Next, we
show some more experimental results using the mul-
tiquadric RBF given by ϕ(r) =

√
1 + r2. Table 4

compares the performance of the AA and BPARAB
strategies for this case. Figures 5 and 6 contain the
corresponding isocurves.

Figure 5: Isocurve extraction for a multiquadric
RBF-interpolant (49 centers) of the function 4y2 −
(x + 1)3(1 − x), sampled uniformly on the square
[−1.1, 1.1] × [−1.1, 1.1] using strategies: (i) AA and
(ii) BPARAB.

Conclusion. Our experiments show that IA has un-
acceptable performance, that AA converges in most
experiments with the cubic RBF but fails for the
multiquadric-based interpolants, that BPARAB is a
general and fast method, and that the BP-strategy for
cubic RBFs does not perform better than BPARAB.

References

[1] Boost interval arithmetic library. www.boost.org.

3

IA AA BP BPARA

NOC NOL CPU NOL CPU NOL CPU NOL CPU

25 138616 6.54s 1264 1.6s 280 0.22s 154 0.15s
49 484660 39.6s 2140 5.3s 325 0.49s 274 0.49s
100 1726852 4m13s 3856 25.8s 898 2.19s 304 1.19s
225 6757600 36m47s 5848 1m56s 1156 8.74s 769 6.30s
400 - - 12880 9m11s 2008 19.1s 1081 16.5s
625 - - 16408 27m59s 3676 56.6s 1120 27.6s
900 - - 17980 629s 4237 1m46s 1636 49.5s
1156 - - 19084 98m55s 4435 2m39s 2032 1m11s

Table 1: Space and time complexity corresponding to Figure 2.

Figure 6: Isocurve extraction for a multiquadric RBF-
interpolant (25 centers) of the function (y−x2 +1)4+
(x2 + y2)4 − 1 = 0, sampled uniformly on the square
[−1.2, 1.2]×[−1.4, 1.0] using (i) AA and (ii) BPARAB.

AA BP BPARAB

NOC NOL CPU NOL CPU NOL CPU

25 2908 4.07s 640 0.51s 448 0.388s
49 6820 16.5s 1237 1.51s 580 1.10s
100 9052 55.7s 1741 4.10s 1156 3.70s
225 18808 5m36s 3580 19.8s 1528 10.5s
400 24988 17m16s 4492 41.8s 1972 29.0s
625 31492 46m57s 5338 1m9s 3652 1m10s
900 34888 108m 6565 2m6s 4120 1m46s
1156 37288 198m 7663 3m53s 4540 2m40s

Table 2: Space and time complexity corresponding to
Figure 3.

[2] C++ affine arithmetic library. savannah.nongnu.org/
projects/libaffa.

[3] J.-D. Boissonnat, D. Cohen-Steiner, and G. Vegter.
Isotopic implicit surface meshing. Discrete and Com-
putational Geometry, 39:138–157, 2008.

[4] L. H. de Figueiredo and J. Stolfi. Affine arithmetic:
Concepts and applications. Numerical Algorithms.,
00:1–13., 2003.

[5] A. Iske. Scattered data modelling using radial basis
functions. In A. Iske, E. Quak, and M. S. Floater, edi-
tors, Tutorials on Multiresolution in Geometric Mod-
elling, Mathematics and Visualization, pages 287–
315. Springer-Verlag, Heidelberg, 2002.

[6] H. Lopes, J. Oliveria, and L. Figueiredo. Robust
adaptive polygonal approximation of implicit curves.

AA BP BPARAB

NOC NOL CPU NOL CPU NOL CPU

25 934 1.29s 181 0.152s 142 0.152s
49 1810 5.96s 376 0.66s 337 0.63s
100 3592 25.9s 784 2.77s 589 2.27s
225 7072 2m39s 1483 11.7s 1183 10.1s
400 11956 2m24s 2350 32.3s 1492 23.2s
625 18766 34m 3691 1m15s 2104 51.2s
900 25252 88m 5122 2m30s 3136 1m45s
1156 27910 154m 5668 3m25s 3895 2m39s

Table 3: Space and time complexity corresponding to
Figure 4.

AA BPARA

NOC NOL CPU NOL CPU

25 1216 1.48s 52 0.068s
49 7726 20.8s 154 0.30s
100 115312 13m36s 274 1.12s
225 — — 289 2.71s
400 — — 520 8.66s
625 — — 598 15.8s
900 — — 610 22.7s
1156 — — 874 41.6s

Table 4: Complexity of Multiquadric-based meshing
corresponding to Figure 5.

Computers and Graphics, 2002.

[7] W. Lorensen and H. Cline. Marching cubes: a
high resolution 3d surface construction algorithm.
Computer Graphics (Proceedings SIGGRAPH 1987),
21(Annual Conference Series):163–169, 1987.

[8] R. Martin, H. Shou, I. Voiculescu, A. Bowyer, and
G. Wang. Comparison of interval methods for plot-
ting algebraic curves. Comput. Aided Geom. Des.,
19(7):553–587, 2002.

[9] S. Plantinga and G. Vegter. Isotopic meshing of
implicit surfaces. The Visual Computer, 23:45–58.,
2007.

[10] B. Stander and J. Hart. Guaranteeing the topology of
an implicit surface polygonizer for interactive mod-
eling. In Proceedings SIGGRAPH, pages 279–286,
1997.

4

