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Certified Computation of planar Morse-Smale Complexes
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Abstract

The Morse-Smale complex is an important tool for
global topological analysis in various problems of com-
putational geometry and topology. Algorithms for
Morse-Smale complexes have been presented in case of
piecewise linear manifolds [3]. However, previous re-
search in this field is incomplete in the case of smooth
functions. In the current paper we use interval arith-
metic to compute topologically correct Morse-Smale
complex of smooth functions of two variables. The
algorithm can also compute geometrically accurate
Morse-Smale complex.

1 Introduction

Problem statement. A Morse function h : R
2 → R

is a real-valued function with non-degenerate criti-
cal points (i.e., critical points with non-singular Hes-
sian matrix). As is well-known, non-degenerate crit-
ical points are either maxima, or minima, or saddle
points. We are interested in the configuration of in-
tegral curves of the gradient vector field ∇h of h. A
stable (unstable) separatrix of a saddle point is the set
of all regular points whose forward (backward) inte-
gral curve flows into the saddle point. (This notion
will be made more precise in Section 2.) A Morse-
Smale function is a Morse function whose stable and
unstable separatrices are disjoint. In particular, the
unstable separatrices flow into a sink (maximum), and
the stable separatrices flow into a source (minimum).
The corresponding gradient vector field will be called
a Morse-Smale system (MS-system). A Morse-Smale
complex (MS-complex for short) consists of all sep-
aratrices corresponding to a MS-system. The MS-
complex describes the global structure of a Morse-
Smale function. We consider the problem of comput-
ing a certified approximation of the MS-complex of a
Morse-Smale function, i.e., a configuration of curves
that is isotopic to the MS-complex. Our algorithm is
based on interval arithmetic.

Our Contribution. We present an algorithm com-
puting such a certified approximation of the MS-
complex of a given smooth Morse-Smale function on
the plane. In particular, the algorithm determines
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• isolated certified boxes for saddles, sources and
sinks.

• certified initial and terminal intervals for saddle-
source or saddle-sink connectors (separatrices).

• disjoint strips around each separatrix, which can
be as close to the separatrix as desired.

Related Work. Computing Morse-Smale complexes
has been widely studied for piecewise-linear func-
tions [3]. Computing MS-complexes is strongly re-
lated to vector field visualization [4]. In a similar
context, designing of vector field on surfaces has been
studied for many graphics applications [6]. The sur-
vey paper [2], focussing on geometrical-topological
properties of real functions, gives an overview of re-
cent work on MS-complexes.

2 Preliminaries

Morse function. A function h : D ⊂ R
2 → R is

called a Morse function if all its critical points are
non-degenerate. The Morse lemma [3] states that
near a non-degenerate critical point a it is possible to
choose local co-ordinates x, y in which h is expressed
as h(x, y) = h(a)±x2±y2. The number of minus signs
is called the index ih(a) of h at a. Thus a two variable
Morse function has three types of non-degenerate crit-
ical points: minima (index 0), saddles (index 1) and
maxima (index 2).

Integral line. An integral line x : I ⊂ R → D pass-
ing through a point p0 on D is the unique maximal
curve satisfying: ẋ(t) = ∇h(x(t)), x(0) = p0, for all
t ∈ I. Integral lines corresponding to the gradient vec-
tor field of a smooth function h : D → R have many
interesting properties, such as: (1) any two integral
lines are either disjoint or coincide; (2) an integral
line x : I → D through a point p of h is injective and
if lim
t→±∞

x(t) exists, it is a critical point of h; (3) the

function h is strictly increasing along the integral line
of a regular point of h and integral; (4) regular inte-
gral lines are perpendicular to regular level sets of h.

Stable and unstable manifolds. Consider the inte-
gral line x(t) passing through a point p. If the limit
lim
t→∞

x(t) exists, it is called the ω-limit of p and is

denoted by ω(p). Similarly, lim
t→−∞

x(t) is called the

α-limit of p and is denoted by α(p) – again provided
this limit exists. The stable manifold of a singular
point p is the set W s(p) = {q ∈ D | ω(q) = p}. Sim-
ilarly, the unstable manifold of a singular point p is
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the set Wu(p) = {q ∈ D | α(q) = p} The stable (un-
stable) manifolds of a saddle point (not including the
saddle point itself) are called the stable (unstable)
separatrices of the saddle point. Each saddle has two
stable and two unstable separatrices.

The Morse-Smale complex. A Morse function on D
is called a Morse-Smale (MS) function if its stable and
unstable separatrices are disjoint. The MS-complex
associated with a MS-function h on D is the subdi-
vision of D formed by the connected components of
the intersections W s(p) ∩ Wu(q), where p, q range
over all singular points of h. According to quadrangle
lemma [3], each region of the MS-complex is a quad-
rangle with vertices of index 0, 1, 2, 1, in this order
around the region.

Poincaré-Hopf Index Theory. Suppose we have a
vector field over some simply connected domain D in
the two-dimensional plane. Let Γ be any closed loop
in D which does not pass through any fixed point of
the vector field. Now, as we move around Γ in the
counter-clockwise sense (which is taken as the posi-
tive direction), the vectors on Γ rotate, and when we
get back to the starting-point, they will have rotated
through an angle 2πiΓ, where iΓ is an integer, called
the Poincaré-Hopf index [5] (or, index for short) of Γ.
For the gradient vector field ∇h ≡ (hx, hy) the index
iΓ of a closed curve Γ, is found by:

iΓ =
1

2π

I

Γ

dφ =
1

2π

I

Γ

d(tan−1 hy

hx

). (1)

The index of a critical point, say p, of a vector field,
say X , is denoted by iX(p) and is defined to be the
index iΓ of a closed curve Γ which contains only the
critical point p, and where no other critical points
are on the closed curve. The following result is well-
known in Index Theory.

Theorem 1 (i) The index of a sink and a source
is +1.

(ii) The index of a saddle point is −1.
(iii) The index of a closed curve not containing any

critical point is 0.
(iv) The index of a closed curve is equal to the sum

of the indices of the fixed points within it.

Let p be a critical point of a Morse-function h, say
with index ih(p). Then p is also critical point of the
gradient vector field of h, say with Poincaré-Hopf in-
dex i∇h(p). Then i∇h(p) = (−1)ih(p).

Interval Arithmetic (IA). Interval arithmetic is used
to prevent rounding errors in finite precision computa-
tions. A range function �F for a function F : R

m →
R
n computes for each m-dimensional interval I (i.e.,

anm-box) an n-dimensional interval �F (I), such that
F (I) ⊂ �F (I). A range function is said to be conver-
gent if the diameter of the output interval converges
to 0 when the diameter of the input interval shrinks
to 0. Convergent range functions exist for the ba-
sic operators and functions, so all range functions are
assumed to be convergent.

3 Methods and Results

Computing the MS-complex of a Morse-Smale func-
tion h : D 7→ R reduces to computing separatrices
of the corresponding gradient system. More precisely,
for computing a certified MS-complex of a Morse func-
tion h over D we proceed as follows:

1. Compute certified intervals of the critical points
and to detect their types corresponding to the
MS-function.

2. Compute guaranteed one-dimensional intervals
corresponding to initial points of each of the sep-
aratrices.

3. Compute certified bounds of the separatrices
starting from one of these one-dimensional inter-
vals to the correct source or sink.

3.1 Local Analysis: Isolating Critical Points.

The following subdivision algorithm isolates the
critical points of a MS-function function h over a
bounding box B (⊆ D). Moreover, the type of
each critical point in the corresponding interval is
also determined by index and orientation test. We
consider the following assumption.

Assumption A: Given a function h we can find a
positive number ǫc such that in any interval I (from
the domain of h) of diameter less than ǫc, h can have
at most one critical point inside I.

Algorithm. SearchCritical(h,B)

1. Initialize a quadtree T to the bounding square
B.

2. Subdivide T until for all the leaves I we have:

0 /∈ �hx(I)
| {z }

(i)

∨ 0 /∈ �hy(I)
| {z }

(ii)

∨ diam(I) < ǫc
| {z }

(iii)

.

3. For each leaf I
4. Do if ¬(i), ¬(ii) and (iii) hold then
5. Compute iΓ := index of boundary Γ of I
6. If iΓ = 0
7. h has no critical point inside I
8. If iΓ = 1
9. h has a source/sink inside I

10. If iΓ = −1
11. h has a saddle inside I

Computing the index of a contour. We assume the
curve Γ contains at most one critical point strictly in-
side it. Now, using the formula in (1) the computation
of the index over the rectangular contour Γ boils down
to finding all the “jump”-discontinuities of the func-
tion tan−1 hy

hx
over Γ and adding them up. In other

words, this reduces to finding isolated 1D-intervals,
say Jci

(Figure1), corresponding to zeros ci of hx pa-
rameterized over Γ such that on these intervals the
sign of hy does not change. Now depending on the

change of sign of
hy

hx
over Jci

, while traversing Γ anti-
clockwise sense, the contribution in the integration is
−π (when the change of sign is from negative to pos-
itive) or +π (when the change of sign is from positive
to negative).
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Figure 1: Index of the rectangle Γ := Γ1 ∪ Γ2 ∪ Γ3 ∪ Γ4.

Certified Intervals for Sinks and Sources. Note
that in the algorithm SearchCritical(h,B) we use
index test to distinguish a saddle from a source or a
sink. However, index test cannot distinguish a source
from a sink. One method to do so is by orientation
test (see in Figure 3). The orientation of the gradient
vector field on the boundary of the interval contain-
ing the isolated sink is inwards, whereas for a source
it is outwards. Again we note that an isolated inter-
val for a source or a sink, obtained using algorithm
SearchCritical may not be certified. Here by cer-
tified interval we mean any integral curve entering
into the interval eventually meet the sink or source in
forward or backward time (without leaving the box).
However, the previous algorithm does not exclude the
possibility of having intervals as in Figure 2. One

s0

Figure 2: An isolated interval for sink s0. The interval is
not certified.

approach to find a certified interval is by subdividing
the interval I recursively, until we find a subinterval
such that the orientation of the gradient field on its
boundary is either completely inward or completely
outward (Figure 3).

(a) (b)

Figure 3: Orientation of the vector field on the boundary
of an interval for a (a) sink, (b) source.

Local analysis of saddle intervals. Algorithm
SearchCritical(h,B) computes isolated 2D-
intervals corresponding to each saddle point of h.
Now we find four disjoint one-dimensional intervals
on the boundary of the 2D-interval (figure 4) such
that each of the four separatrices passes through
one of these 1D-intervals. The method consists of
following three steps.

1. First, we refine the box containing the saddle,
recursively, until the function restricted over the

boundary of the box has exactly four extrema
(two maxima and two minima), Figure 4-(a).

2. Next we find four disjoint 1D-intervals containing
four extrema, respectively Figure 4-(b).

3. The final step is to refine these four 1D-intervals,
recursively, until they are guaranteed to contain
the corresponding separatrix. This requires to
satisfy an orientation property between two con-
secutive 1D-intervals, Figure 4-(c).

max

max

minmin

(a) (b)

integral curve
p0 q0

(c)

Figure 4: Saddle box: (a) refining until four extrema,(b)

four initial 1D-intervals, (c) refining 1D-intervals by ori-

entation test.

3.2 Global Algorithm: Certified Separatrices

Finally, corresponding to each separatrix we compute
a certified region bounded by two piecewise linear
boundaries. The piecewise linear boundaries start
from the end points of the 1D-intervals near each
saddle. We need the following assumption for the
convergence of the algorithm.

Assumption B: ψ-normal variation. We assume
that the function h satisfies ψ-normal variation con-
dition, which is: for x1, x2 ∈ D\C, ‖x1−x2‖ ≤ δ and
δ > 0,

〈∇h(x1),∇h(x2)〉

‖∇h(x1)‖‖∇h(x2)‖
> cosψ.

Here, C denotes the union of all certified intervals of
the critical points of h in D.

θ

p0

p1

X(p0)

l(p0, Xθ(p0))

Figure 5: Line-segment p0p1 on which orientation and

monotonicity property hold.

Lemma 2 Let X := ∇h satisfies ψ-normal variation
in D \ C. Again let, Xθ denote the corresponding
vector field rotated anti-clockwise by an angle θ (ψ ≤
θ < π

2 ). Then for a directed line segment l(p0, Xθ(p0))
along the direction Xθ(p0) with starting point p0 and
length δ (segment p0p1, in the figure 5), the following
properties hold:

(i) for each point q ∈ l(p0, Xθ(p0)),
∆(X(q), Xθ(p0)) > 0, (here ∆(v1, v2) :=
˛
˛
˛
˛

a1 b1
a2 b2

˛
˛
˛
˛ for vi ≡ (ai, bi))
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(ii) h is monotonically increasing along this line seg-
ment l(p0, Xθ(p0)).

(iii) The minimum change of the height function h

on this line segment is δ cosψ.

Algorithm: ComputeSeparatrixBounds(h,B0)
Input: Vector-field X , starting 1D-interval of the sep-
aratrix p0q0, bounding box B0.
Output: A certified stripe containing a separatrix.

1. Initialize: θ ← θ0(θ0 <
π
2 )

2. Rotate(X, θ): Rotate vector-field X(p) anti-
clockwise by an angle θ.

3. ComputeLeftBoundary(p0, Xθ): Compute
polygonal line-segment lθ starting from the point
p0 such that the separatrix (passing through the
line segment p0q0) remains on the right side of
lθ.

4. Rotate(X,−θ): Rotate vector-field X(p) clock-
wise by an angle θ.

5. ComputeRightBoundary(q0, X−θ): Compute
polygonal line-segment l−θ starting from the
point q0 such that the separatrix (passing
through the line segment p0q0) remains on the
left side of l−θ.

6. if both lθ and l−θ meet the same “sink” (or
“source”) and the region between lθ and l−θ does
not contain any critical point, then the separatrix
converges to that sink; return.

7. else-if both lθ and l−θ meet the boundary of the
box B0 and the region between lθ and l−θ does
not contain any critical point, then the separatrix
converges to the boundary; return.

8. else θ ← θ
2 and goto step 2.

Convergence. To prove that the algorithm con-
verges in finite number of steps, we prove the follow-
ing. First, using lemma (2) we find an upper bound
of the number of segment in the line lθ.

Theorem 3 Let the change of the height function
h along a separatrix, outside the critical region, be
H (computed as: h(final) − h(starting)). Then an
upper bound of the number of segments in lθ is given

by:
⌈

H
δ cosψ

⌉

.

This proves that the sub-procedures: Com-

puteLeftBoundary and ComputeRightBound-

ary converge in a finite number of steps. Moreover,
using the assumption B, we can prove that the global
algorithm converges in a finite number of steps.

4 Implementation Results

In this section we illustrate a few implementation out-
puts with timing results of our algorithm. In figures 6-
8 we compute the certified MS-complex of different
functions for distinct values of the parameters ǫc (de-
scribed in the algorithm SearchCritical) and angle
θ of rotation of the vector field. We use the Boost li-
brary [1] for IA. All experiments have been performed
on a 3GHz Intel Pentium 4 machine under Linux with
1 GB RAM using the g++ compiler, version 3.3.5.

: saddle : maximum : minimum

Figure 6: MS-Complex of the function: cos x sin y +

0.2 (x + y) for (i) ǫc = 0.5, θ = π

10
, CPU-time = 8 sec.,

(ii) ǫc = 0.2, θ = π

30
, CPU-time = 20 sec., inside box

[−3.5, 3.5] × [−3.5, 3.5].

Figure 7: MS-Complex of the function: 10x− 13

2
(x2+y2)+

1

3
(x2+y2)2 for (i) ǫc = 0.5, θ = π

10
, CPU-time = 0.16 sec.,

(ii) ǫc = 0.2, θ = π

30
, CPU-time = 0.5 sec., inside box

[−5, 6] × [−5, 6].
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Figure 8: MS-Complex of the function constructed by

multiplying 7 linear functions: (i) contour plot using

Mathematica, (ii) MS-complex with ǫc = 0.17, θ = π

30
,

CPU-time = 15 min., inside box [−7, 7] × [−7, 7].

Conclusion. The outcome of our research is two-
fold. Firstly, we compute the topologically correct
MS-complex of a Morse-Smale system. The saddle-
sink or saddle-source connectivity can also be repre-
sented as a graph. On the other hand, depending on
a user-specified parameter we can compute the geo-
metrically accurate MS-complex.
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